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LETTER TO THE EDITOR 

Escape from metastability via aging: non-equilibrium 
dynamics in a one-dimensional Ising model 

J Kisker, H Rieger and H Scbreckenberg 
Institut fd Theoretische Physik. UniveniSt TU Kbln. 50937 Kbln, Germany 

Received 26 August 1994 

Abshad  The nonqquilibrium dynamics of a onedimensional Ising model with uniform, 
short-ranged three-spin interactions is investigated. It is shown that this model possesses an 
exponentially large number of metastable configuntions that are stable against sinae spin flips. 
This glass-like situation results in a complete freedng of the system at low temperahlres for times 
smaller lhan an intrinsic time-scale, which diverges exponentially with inverse temperamre. Via 
lhemal activalion the system eventually =capes from this frozen state, which signals the onset 
of aging by domain growth 

Glassy dynamics is one of the most fascinating subjects in modem physics [1,2]. It 
manifests itself in an extremely slow relaxation exceeding laboratory time-scales caused 
by a rough energy landscape. In spin glasses this complex dynamics is due to frustration 
and randomness [3] and results in well known aging effects [4,5] meaning a characteristic 
history dependence of dynamical observations. 

However, as is obvious from the situation in e.g. window glass, disorder is not a 
necessary ingredient for these phenomena to occur. For spin models it has been pointed 
out a long time ago [8] that frustration without disorder might be able to produce a low- 
temperature behaviour reminiscent of spin glasses. Indeed, experiments with geometrically 
frustrated antiferromagnets [6,7] showed anomalous dynamical behaviour below a certain 
temperature that was interpreted as a spin-glass hansition. The magnetic properties of 
these materials are supposed to be adequately described by antiferromagnetically-coupled 
Heisenberg spins on a Kagom6 lattice and recent numerical studies of this model also 
yield indications for dynamical freezing [9] and possibly spin-glass ordering [IO] at low 
temperatures. 

On the other side, disorder without frushation can also cause anomalous dynamics 
and slow relaxation: Diluted or disordered ferromagnets are prominent examples [ 11,121 
for systems in which non-equilibrium dynamics is characterized by domain growth that 
is drastically slowed down by pinning of domain walls at vacancy-sites or weak bonds. 
Obviously at low enough temperatures it becomes very hard to discriminate such a scenario 
from true spin-glass dynamics. Even non-frustrated, non-disordered models at, or close 
to, criticality will exhibit anomalously slow non-equilibrium relaxation including aging, 
originally supposed to be typical for spin glasses [ I l ,  131. 

In this short note we present a very simple spin model without any frustration or 
disorder that possesses many glass-like features at low temperatures. It turns out that, 
quenching the system from high to low temperatures, the dynamics become trapped within 
micmscopic time scales in a metastable configuration without long-range order. The system 
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remains frozen in this amorphous state for a macmscopic time before it will try to reach an 
energetically more favourable, ordered state via domain growth. This is very reminiscent of 
the structural glass transition scenario [Z], however, this should only be taken as a pictorial 
analogy. 

The model which we consider is a one-dimensional king spin system with p-spin 
interactions defined by the Hamiltonian 

(1) 

The constant J fixes the energy scale of the spin interactions, which we set to one from 
now on, and periodic boundary conditions are imposed. The dynamics is defined to be the 
usual Glauber-dynamics 1141, where each spin is flipped with probabiIity 

@(Si -+ -Si) = i[l - Si tanh(hi/T)j (2) 

where the local field hi is defined to be one half of the energy difference between the 
configuration with spin Si =' +I  and the same configuration with spin Si = -1, and T 
is the temperature. We use sequential update for the analytic calculations as well as for 
the numerical simulations. For p = 2 one gets the well known ferromagnetic Ising chain, 
whose dynamics with random sequential update has been solved by Glauber [14]. Note 
that for p odd the Hamiltonian (1) does not have the usual spin-flip symmetry Si -+ -Si. 
Furthermore the local field is a sum over p terms with values + 1  or -1, from which it 
follows that i t  can never be identical to zero in the &e p odd, whereas for even p the 
probability for a spin to have zero local field is finite. Thus one has to discriminate between 
two different situations. For p odd a new situation arises, similar to p = 2 with external 
field [15]. For p even and p > 4 features of the latter case will coexist with those already 
known from the case p = 2 [14]. Therefore from now on we will concentrate on the most 
simple case with p odd, i.e. p = 3 and leave the study p > 4 to a more detailed analysis 
[]GI. 

First we study the zero-temperature properties of this model. The groundstate of this 
system has a 4-fold degeneracy (in general 2 p - I )  given by t 

( I )  . . .++++ ++++ + " '  

(2) . . . + - - ~ +  - - +- - . . . 
(3) .  . . - + - - + - -~+ - . . . 
(4). . . - - + - - + - - + . . . , 

(3) 

Introducing a local energy-variable q = S+lSjSi+l all groundstate configurations are 
described by si = +1  for all sites i. Consider a configuration in t and S variables 

0 " ' + ++ + + +t_+~+~+ +~ __+~t~+~+~_+~++~+~+~+~+ + +~~+~+  ": 

a...+++++++++++ + - -+--+--+--+--+. . .  (4) 

i 

t For simplicity we stipulate that L is a multiple of p 
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which consists of two domains, both being in a minimum energy configuration, separated by 
a domain wall located at site i (note that in general one has 2P-I different kinds of domains, 
corresponding to the groundstate degeneracy). A closer look at the transition probabilities 
(2) tells us that it costs an energy amount of 2S,hj = 2(r,-1 + rj + rj+,) to flip one spin, 
i.e. in configuration (4) 65 for spins within the domains and 25 to flip the spins at the three 
sites i - 1, and i + 1 surrounding the domain wall. Thus this configuration is stable against 
single spin flips and at finite, but small, temperatures it needs a time 

rf- sz exp(2JjT) (5) 

to move the domain wall one lattice spacing to the left or right. This is the time scale (which 
is quite large for T << 5) on which the particular configuration remains frozen for small 
temperatures. Moreover, it can be shown that all configurations of the type (4) consisting 
(expressed in r-variables) of strings of arbitrary length I 2 2 with r = +1 separated by 
isolated sites with r = -1 are indeed metastable: From what has been said above it is clear 
that the criterion for metastability is 9 - 1  + ci + q + l  > 0 for all sites i .  Thus in any triplet 
(zj-1, ri, q + I )  at most one minus sign may occur. Hence any metastable configuration can 
be represented by an arbitrary sequence of two elementary units '+ -+'and '+'. The total 
number n' of all possible sequences in a system with L sites can be calculated via the 
Fibonacci-like iteration n L  = n ~ - l  + nL-3. The result for L 4 CO is 

Starting with a random initial state the sequential update procedure at zero temperature will 
drive the system into one of these exponentially large number of metastable states within 
only two sweeps through the whole chain. A random sequential update and small non- 
vanishing temperature wiIl not change this scenario significantly. Thus after ZQ, where TO 
is the microscopic time scale, the system will be frozen for a time rt , ,  = exp(2JjT). 

What has been said so far can be quantified by looking at the spin autocorrelation 
function Cr( t ,  to) = l / L  Ctl(Si(t + tm)Si(Zo))7 and the time-dependent energy E j - ( t )  = 
1/L E:=, ( q ( t ) ) ~  where (. .)T means the expectation value with respect to the (t ime 
dependent) probability distribution of spin configurations determined by the master equation 
for the stochastic process considered here (in the limit L + 00). These quantities can 
easily be calculated for the ferromagnetic Ising chain (i.e. p = 2) [14]. In the present 
case such a treatment is not possible for the same reasons as in the ferromagnetic Ising 
chain in M erternalJTeld or the Cayley tree with branching number two [15]. However, 
the remanent magnetization Cr(t ,  to) and the energy E&) can be calculated analytically 
for zero temperature with the tools introduced in [15]. In this letter we only note that an 
important ingredient for this problem to be exactly solvable is the fact that the local field 
acting on the spins never vanishes (details will be published elsewhere [lb]): 

C r ~ ( t ,  0) = 0.475 for f > 2 

Cj-S(l,O) = 0.5 

Cr,o(l, 1) = 0.9 

E T d ( 1 )  = -0.5 
E,,o(t) = -0.6 for t > 2 

Cj-=o(t. to) = 1 for to 2 2. 



L856 Letter to the Editor 

Remanent Magnetization CT(t.O) 
0.6 1 , 

1 10 100 1000 10000 100000 
t 

Figure 1. The ttmanent magnetization for various temperatures calculated via Monte Carlo 
simulation of a system with IO6 spins. From right to left: T = 0.14, 0.17, 0.20, 0.23, 0.26, 
0.29, 0.32 and 0.35. The insen shows the temperature dependence of t,i,, defined in the text, 
the straight line is the predicted dependency r k r c  -exp(ZJ/T) ( J  = I ) .  

According to the above arguments the relations (7) also hold for T # 0 as long as 
t << qmz. To check this we performed Monte Carlo simulations of this model and results 
for the remanent magnetization Cr(t, 0) at various temperatures are shown in figure 1. One 
observes the plateau at the value 0.475 extending to larger and larger times for decreasing 
temperatures. For low temperatures the final decay of C&, 0) seems to be algebraic (before 
it will crossover to an ultimately exponential decay at times comparable to the equilibration 
time, cf [ 1 I]). Fitting a straight line to this decay in a log-log plot yields an intersection 
with the (imaginary) line Cr = 0.475, by which we define the time scale for the 
lifetime of the metastable state. The temperature dependence of this quantity is depicted in 
the insert of figure 1 and yields, as expected r,l,,, o( rk=.  

We also looked for the waiting time (f,) dependence of C( f ,  to) and found that the 
zero-temperature-predictions (7) are indeed also fulfilled for finite temperatures as long 
as t < qreezE. Note that obviously for f < theerP scaling laws like C(t,t,) - e(z/t,), 
which apply in many aging scenarios [I 1,171 cannot hold. However, for I > sf- this 
conventional scaling is restored. Furthermore we calculated the remanent energy E&) 
in Monte Carlo simulations. The result is depicted in figure 2. As for the remanent 
magnetization one sees the characteristic initial plateau. Furthermore by plotting the value 
of ET(t) versus temperature T for fixed time t one gets a characteristic non-monotonic 
behaviour. However, for f -+ M the location of the minimum approaches T = 0 
and one obtains a monotonic increase with temperature as expected for an equilibrium- 
thermodynamical internal energy. 

Inspecting again configuration (4) and the following analysis one might expect that once 
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Figure 2. The energy ET(r)  for various temperatures From right to lei? 0.17.0.20, 0.23, 0.26, 
0.29, 0.32.0.35, 0.4,0.5,0.6 and 0.7. The insert shows the temperature dependence of Er(100) 
and Er(500). 

the observation time reaches the time scale rfreez the domain wall will perform a random 
walk. In an arbitrary metastable configuration domain walls will randomly diffuse on a 
characteristic time scale rha and annihilate when two of them meet. This scenario will 
results in a .J? growth of the domain size. TO check this, we measured the average domain 
size in Monte Carlo simulations. We define size 1 of a domain to be equal  to the number of 
spin pairs between two succeeding r-variables that have the value -1. Then, at a time f, we 
count the number nr(t) of domains of size f..This defines the probability &(1, t )  = Inl(t)/L 
for a spin pair to be contained in a segment of length 1.  

In figure 3 we show the result of the average domain size at time f after the quench 
d( t )  = C r I P ~ ( l ,  t )  in a log-log plot. Again one recognizes the frozen regime from d(f )  
being constant for t << rf-. For larger times an intermediate growth regime follows and 
we inserted a graph of d ( t )  cx .J? comparison. One concludes that the above mentioned 
picture of domain wall diffusion and annihilation is indeed to be applicable here. As soon 
as f reaches the order of the equilibration time rq, the domains stop growing and d ( t )  
saturates at a value proportional to the equilibrium correlation length t&), which can be 
calculated analytically [ 161 

&(T) = $Ilogtanh(J/T)I-' cxexp(J/T) for T << J .  (8) 

Apart from the prefactor 3/2 (in general p /2 )  the result (8) is identical to the case p = 2 
[14]. This is a general feature of the model (1): although the dynamics shows drastic 
differences between p even and odd it turns out that the equilibrium behaviour of static 
quantities is very similar. 
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Figure 3. Average domain size in dependence of the wailing Lime t in a log-log plot. The 
intermediate growth (bemeen melting of the frozen domains and hod saturation by equilibration) 
can be filled nicely to d(1) - t'/' (solid line). 

At zero temperature one can again calculate the average domain size exactly, and also 
beyond that the whole probability dis6ibution PT=o(l ,  t )  for a site being contained within 
a domain of size 1 at time r .  Here we only give the result, details of the calculation will be 
published elsewhere [16]: 

Remember that after two timesteps the system is fiozen at zero temperature. The average 
domain size dT=O(t) at zero temperature is then given by: 

dT=o(r = 1) = 5 drEo(t > 2) = = 5.775. (11) 

These analytical results an compared with data obtained from Monte Carlo simulations 
in figure 4(a). The agreement is excellent even at finite temperatures for t (( rfmz. 
In figure 4(b) we also show results for & ( I ,  t )  at higher temperatures for t = I ,  2, an 
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Figure 4. Probability dishibution PrU, 1 )  For domain sizes 1 at time f obtained from Monte 
WO simulations. Left T = 0.17 and I = I ,  2, the full curves are the analytical result. Right: 
T = O S  and 1 = l , t  = 100 and r =3OOOO- 7,. 

intermediate time (in the growth regime) and a time larger than the equilibration t i m e t h u s  
reflecting the equilibrium distribution. 

To conclude we have presented and analysed a simple one-dimensional model whose 
non-equilibrium dynamics seems to share many features with a glass transition. One of 
them is, for instance, the complete freezing of the system in an 'amorphous' state for a 
macroscopic time when cooled rapidly to low temperatures. Another is that this complex 
dynamics is achieved without putting in any disorder by hand. Of course, due to its o n e  
dimensionality, it does not have a phase transition and also no particular temperature can 
be identified with a glass transition (leaving aside the question whether the latter is a true 
equilibrium phase transition or of purely dynamical origin). However, demonstrating that 
even very simple models yield a very rich dynamical behaviour, gives us some confidence 
that in higher dimensional models one might find indeed a candidate that shares more or even 
nll features with a glass transition (as presently discussed in the context of geometrically 
frustrated models [lo]). 

As we have shown many new features of our model arise from the presence of multi-spin 
interactions. Thus it seems worthwhile to have a closer look to such models in two or three 
dimensions, as already discussed in [18]. To support this view let us mention that it has been 
pointed out several years ago [I91 that mean-field models with p-spin interactions (see also 
[ZO]) show a dynamical behaviour that is identical to that found in mode-coupling theories 
of the structural glass transition. Moreover, very recent work on self-induced disorder in 
models with long-range interactions [21] heavily rely on multi-spin interactions, too. 

This work was performed within the SFB 341 Koln-Aachen-Jiilich, 
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